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Abstract� There has been a growth in the design and use of 

power assist devices for manual wheelchairs (MWCs) to 

alleviate the physical load of MWC use. A pushrim-activated 

power-assisted wheel (PAPAW) is an example of a power assist 

device that replaces the conventional wheel of a MWC. 

Although the use of PAPAWs provides some benefits to MWC 

users, it can also cause difficulties in maneuvering the 

wheelchair. In this research, we examined the characteristics of 

wheelchair propulsion when using manual and powered wheels. 

We used ���������	
���
������������angular velocity to calculate 

the linear and angular velocity of the wheelchair. Results of this 

analysis revealed that the powered wheel�s controller is not 

optimally designed to reflect the intentions of a wheelchair 

user. To address some of the challenges with coordinating the 

pushes on PAPAWs, we proposed the design of a user-intention 

detection framework. We used the kinematic data of MWC 

experiments and tested six supervised learning algorithms to 
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found that all the classification algorithms determined the type 

of movement with high accuracy and low computation time. 

The proposed intention detection framework can be used in the 

design of learning-based controllers for PAPAWs that take into 

account the individualized characteristics of wheelchair users. 

Such a system may improve the experience of PAPAW users.  

I. INTRODUCTION 

Manual wheelchairs (MWCs) are the most commonly 
used WMADs among the spinal cord injury (SCI) population. 
MWC users rely on their upper extremity strength to move 
themselves and the chair. MWCs are relatively lightweight, 
maneuverable, and portable, but are also physically 
demanding to use. Manual wheelchair (MWC) users are at 
high risk of upper extremity joint pain, joint degeneration, 
and fatigue [1]. Power wheelchairs (PWCs) are the second 
most commonly used WMADs among the SCI population. In 
these devices, batteries and electric motors provide all the 
required power to move the chair, allowing the users to easily 
navigate with minimal effort (e.g., use of joystick, touchpad, 
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etc.). PWCs provide a less physically taxing alternative to 
MWCs. However, since PWCs are bulky and difficult to 
transport, users of these devices often face more 
environmental and social barriers. To address these 
secondary conditions, several power attachments have been 
developed to mitigate or eliminate the physical load of MWC 
use. Motorized front-end attachments, such as Firefly from 
Rio Mobility, transform a MWC to a powered tricycle by 
lifting the front casters [2]. The user can control the 
���������	
���
�������������������������	��������	�
���	������
while maneuvering the wheelchair by steering the front 
wheel. Controlling a MWC with a front-end attachment is 
intuitive and relatively easy for those with sufficient hand 
function. SmartDrive MX2+ from Permobil is an example of 
a rear-��������������� ����� ��������� ��� �������������	
�� 	��	�
axle and can be controlled by thumb throttles or a wristband 
[3]. The wristband has an embedded accelerometer to 
	���������
	��������������	��������������	
������������������	��
and stop the motion or maintain a constant speed. Although 
control of SmartDrive is not taxing for more experienced 
users, it could be challenging and counter-intuitive for novice 
users. For example, if the user holds the rims to stop or slow 
down, SmartDrive senses resistance and therefore provides 
more power to move forward. Pushrim-activated power-
assisted wheels (PAPAWs) are another example of power 
attachments for MWCs. PAPAWs have built-in sensors to 
measure the user input at each stroke and use this information 
to provide the desired motor power to the wheels. PAPAW 
users can propel a wheelchair in the same way as propelling a 
MWC while exerting less effort.  

Although PAPAWs and conventional manual wheels 
have very similar designs and user interfaces, PAPAW users 
have reported several difficulties with coordinating the 
pushes on each wheel to achieve a smooth ride [4]. The 
dynamics of wheelchair propulsion indicate that the applied 
forces on the left and right wheels, whether intended or not, 
determine the speed and direction of movement. Therefore, 
the abovementioned challenges of PAPAW control could be 
related to: (1) variances ��� ���	�
� 
�������� �������� ����

	�
������� ������� ������� ���� ���	
�� ��	������ �����	� ���
�	���
variability between the left and right sides [5]); and/or (2) 
unexpected external disturbances (e.g., environmental and 
road conditions [6]). Accordingly, we believe that 
���	����	������ ���������	� ���	�
� ����������� ����� ����	�������
with the wheels is an essential step for successful, optimized 
PAPAW controller design.  
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In this research, we performed two sets of experiments to 
examine the kinematic characteristics of manual and power-
assisted pushrim-activated wheelchair propulsion. We used 
gyroscope data to calculate the linear and angular velocity of 
the wheelchair for different wheelchair movements and 
compared the propulsion performance by analyzing these 
velocities. Based on the findings of these experiments, we 
outlined some of the limitations of a PAPAW (Twion from 
Alber) controller. To address these limitations, we proposed 
the use of supervised learning algorithms to estimate the 
intention of MWC users by monitoring the kinematics of 
wheelchair motion. We tested six classification techniques to 
determine the use	
�� ����������� ����	�� not moving, moving 
straight forward, turning left, or turning right. 

II. BACKGROUND 

���� ���������	� ���	
�� ��	���� ���� ����������� ����	�������
with the left and right pushrim is required to initiate and 
��������� ����!�
� �������� "�	�� ��� 	�#��w some of the 
control strategies that were developed for the collaborative 
interactions between the user and the powered wheels. In one 
study, a PAPAW controller was designed to amplify the 
���	
�� ��
��� ��	��� ��� ���� 
���	���� ������ �������	���� ��
minimum threshold to compensate for side-to-side 
�����	������ ��� ���� ���	
�� ��
��� ��	�� [8]. Another PAPAW 
controller was designed to generate a balanced assist torque 
����������	���������������������	�������������������	
����
���
torque to right and the left wheels and the ratio of these 
torques [9]. In another research, a fuzzy algorithm that takes 
in the kinematics and kinetics characteristics of wheelchair 
propulsion (e.g., posture angle and angular velocity of the 
wheelchair, the input torque proportion and the sum of the 
input torque to the right and left wheels) was developed to 
provide the assist torque [10]. Researchers have also 
investigated the use of a two-dimensional assist torque to 
����	��� ���� ���������	
�� ��	������ ���� 	���������� ������� ���
using the sum and difference of user input torque to the left 
and right pushrims, respectively [11].  

Reported outcomes of the reviewed literature revealed 
that implementation of the proposed controllers in PAPAWs 
can improve user-wheelchair interaction by providing an 
intuitive sense of control to the users. However, all these 
controllers were designed based on a predefined model 
characteristic of a user-device interaction. Moreover, they 
used fixed thresholds to determine the intention of users for 
different wheelchair maneuvers. Therefore, the individual 
characteristics of users were disregarded. Although the 
development of learning-based controllers for PAPAWs was 
proposed in previous research [8], no studies have been 
published.  

Inertial sensor-based measurements of wheelchair 
propulsion have been studied in previous research and were 
shown to provide reliable and high accuracy data to estimate 
the kinematics of wheelchair movements [12],[13]. In one 
study, data from multiple accelerometers and gyroscopes, 
������ ��	�� ��������� ��� ���� ���������	� ���� ����
�	����
���
��
body, were used to observe the kinematics of wheelchair 
propulsion. Support vector machine (SVM) classifiers were 
then used to analyze the data and determine whether the 
wheelchair motion is a self-propelled or an attendant-
propelled type [14].  

In this work, we used inertial measurement units (IMU) 
to measure the kinematic characteristics of manual and 
pushrim-activated power-assisted wheelchair movements. 
Moreover, we studied the use of supervised learning 
algorithms to est���������������	� ���	�
� ���������� 	���	�����
the direction of motion (e.g., moving straight, turning left, or 
turning right) when propelling a MWC. This information 
may provide insight into the design of more efficient 
PAPAW controllers. We also sought a system that did not 
rely on pushrim force data in hopes of designing a simpler 
and cheaper system. 

III. METHODS 

We performed two sets of experiments with an able-
bodied subject with experience wheeling both a MWC and a 
pushrim-activated power-assisted wheelchair. In this section, 
we describe the experimental procedures as well as the 
techniques used to analyze the data.  

A. Experiment 1: Manual Wheelchair Propulsion  

An instrumented wheel (SmartWheel [15]) was used to 
measure the kinematics of motion on the right side of a 
MWC. The other MWC wheel was modified for similar 
inertia characteristics to the SmartWheel. Force and 
kinematic data were collected at 240 Hz and transferred to a 
laptop via WIFI. One smartphone with a MATLAB android 
application was mounted at the center of each wheel. The 
mounting location is shown in Fig. 1 (left). 3-Axis gyroscope 
data were collected at 10Hz and transferred to two separate 
laptops via WIFI. Gyroscope data were time-stamped and 
synchronized.  

Experimental trials were designed to capture the 
���	����	������� ��� $������ ��� ���������	� ��������%� ��� �������
activities of daily living, which are dominated by short and 
slow movements [16]. The participant was instructed to start 
the movement from rest and follow a predefined path at a 
self-selected speed. We performed 3 trials for each of the 
���������� ����� ��� ��#������&� �'<� $��	�����%& starting from 
rest, moving straight forward, and stopping 10 meters away 
�	��� ���� ���	����� 
����=� �><� $����� ��	�%&� ���	����� �	��� 	�����
moving straight forward for 5 meters, turning left at 
approximately a 90° angle, moving straight forward, and 
stopping 5 ����	��������	���������	�����
����=������?<�$	�����
��	�%&� ���	����� �	��� 	����� ��#���� ��	������ ��	��	�� ��	� Q�
meters, turning right at approximately a 90° angle, moving 
straight forward, and stopping 5 meters away from the 
turning point. A schematic of the three pre-defined paths is 
shown in Fig 2. Navigating these three paths required 
bimanual coordination of the pushes on both wheels. All 9 
trials were performed indoors and on a flat concrete surface. 

The linear and angular velocity of the wheelchair was 
calculated using the angular velocity of the left and right 
wheels. To validate the results, the calculated linear velocity 
���� 	����
���� ���� ���
�	��� ����� ���� \��	�!����
��
�����	����
�������
����
�	����������������������\��	�!����
� 
measured velocity is only valid for the straight motion of the 
wheelchair). We used the normalized root mean square error 
(NRMSE) measure to compare the similarity between the 
������	#�����	�����$��	�����%���#���������������� 
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Figure 1.  Location of the smartphone on the wheel (left); Location of the 

smartphone at the back of the seat (right) 

 

Figure 2.  The predefined paths for the three movement sets&�$\�	�����%��

$^������	�%��$R�������	�% 

B. Experiment 2: Power-Assisted Wheelchair Propulsion 

In this experiment, we replaced the manual wheels with 
the Twion powered wheels [17]. Similar to the previous 
experiment, one smartphone with a MATLAB android 
application was mounted at the center of each wheel. Another 
smartphone was mounted on the wheelchair frame at the 
backrest. The mounting location is shown in Fig. 1 (right). 
The gyroscope data from the three smartphones were 
measured and transferred to laptops similar to experiment 1. 
These data were collected from the same user while 
performing the same pushing maneuvers as experiment 1. To 
validate the results, we compared the calculated angular 
velocity with the �����	������� ��� ���� ���������	� �	���
��
gyroscope. NRMSE was used to compare the similarity 
between the measured and calculated angular velocity for all 
the movement sets.  

C. Measurement Analysis 

The gyroscope measurements were filtered using a low-
pass second order Butterworth filter with a cut off frequency 
of 4 Hz [18]. These data were then used to calculate the linear 
and angular velocity of the wheelchair. The linear and 
angular velocities represented the straight and rotational 
characteristics of the wheelchair motion, respectively. When 
performing a $��	�����%� ��#����� trial, it is ideal to have 
zero angular velocity throughout the motion. Deviations from 
this ideal pattern are not desirable and affect the quality of the 
ride. We used the root mean square (RMS) of the 
���������	
��������	�#�����������_���������#�����#�������������
deviations. Lower RMS values are associated with smoother 
rides.  

To address some of the limitations of a PAPAW 
controller, we proposed the use of supervised learning 
����	������ ��� �������#���� ����	����� ���� ���	
�� �����������
when propelling a wheelchair. To classify user intentions, we 
implemented six supervised learning algorithms in Python, 
namely logistic regression, random forest, naive Bayes, extra 
trees, and artificial neural network. Features were selected 
from the measured and calculated kinematic data of 

experiment 1 and included: linear and angular velocity of the 
wheelchair, linear and angular acceleration of the wheelchair 
(calculated using a 5-point backward numerical 
differentiation scheme), and the radius of curvature of the 
���������	
�� �	�`����	�. The training data set included a 
combination of data from two trials of each movement sets. 
Data from the third trial of each movement set were used as 
the test set. We used different combinations of the kinematic 
data to classify 4 wheelchair movements as: ����� ���	�
�, 
����	�
� ��
�	
��� ��
��
��, ���
�	�
� �����, or ���
�	�
�

	
���. To detect these phases, we defined the following 
	����&� �'<� ���� ���������	� ��� ��� �� $���� ��#���%� 
����� ��� ����
magnitude of the linear velocity is less than 0.12 m/s [16]; (2) 
the user is intending to turn left if the angular velocity is 
greater than a certain positive threshold and is intending to 
turn right if the angular velocity is less than a certain negative 
��	������� ����� ��	����� ��	� ���� $��	����� ����%� ���� $��	�����
	����%���#����ts were set after preliminary analysis of the 
$��	�����%� ��#������ �	����<=� �?<� ���� ������	� #��������
���������� ��	� $��	����� ����%� ���� $��	����� 	����%� ��#������
needed to be valid for at least 1 second. 

IV. RESULTS 

In experiment 1, the comparison between the measured 
linear velocity of the SmartWheel and the calculated linear 
velocity (using the ������
� gyroscope data) confirmed the 
validity of our calculations. The average NRMSE between 
the two data sets was less than 2.3%. In experiment 2, the 
comparison between the measured angular velocity of the 
wheelchair ������� ���� ����
�� gyroscope data) and calculated 
angular velocity (using the ������
� gyroscope data) 
confirmed the validity of these calculations. The average 
NRMSE between the two data sets was less than 4.9%.  

|��� �}��
��� ��� �� $��	�����%� movement trial from 
experiment 1 is shown in Fig. 3. In this figure, the cyclic 
pattern of the linear velocity profile represents the push and 
recovery phases during wheelchair propulsion. Another 
�}��
����	�����$����� ��	�% trial in experiment 2 is shown in 
Fig. 4. In this figure, the region of the graph with high 
angular velocities (between t ~ 4 sec and t ~ 6 sec) indicates 
the 90°-turning phase of ���� $����� ��	�%� ��#������� Regions 
with low angular velocities are associated with the moving-
straight-forward phase of ����$�������	�% movement where the 
user attempted to wheel on a straight path. 

The linear and angular velocity of the wheelchair was 
calculated for all the trials; a summary of the results is 
presented in Fig. 5, Fig. 6, and Fig. 7. The average peak 
linear velocity in both experiments was the highest in the 
$��	�����%���#�������	���s; 1.52±0.08 m/s and 1.65±0.09 m/s 
for manual and powered-wheels, respectively. For all the 
$��	�����%� �	����� the magnitude of the angular velocity was 
greater than zero, but less than 0.4 rad/s and 0.5 rad/s for the 
manual wheels and powered wheels, respectively. This 
indicates the presence of side-to-side temporal and/or force 
asymmetry. ��	� ���� $����� ��	�%� ���� $	����� ��	�%� �	������ ����
maximum angular velocity was the highest during the turning 

�������������$�������	�%��	�����������#�	������}�����������	 
velocity (CCW direction) was 1.15±0.04 rad/s and 1.34±0.20 
rad/s for the manual and powered wheels, respectively. In the 
$	����� ��	�%� �	������ ���� �#�	���� ��}����� ������	� #��������
(CW direction) was 1.30±0.08 rad/s and 1.15±0.06 rad/s for  
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Figure 3.  Validation of the gyroscope measurements: Experiment 1 

 

Figure 4.  Validation of the gyroscope measurements: Experiment 2 

 
Figure 5.  Peak linear velocity 

 
Figure 6.  Peak angular velocity (CCW) 

 

Figure 7.  Peak angular velocity (CW) 

the manual and powered wheels, respectively. Further 
analyses of the kinematic data revealed that: 

� ��	�����$��	�����%��	�������he average linear velocity of 
the wheelchair was higher when using PAPAWs 
(1.06±0.16 m/s) compared to manual wheels 
(0.98±0.14 m/s). 

� For ����$�������	�%�����$	�������	�% trials, the average 
linear velocity of the wheelchair was higher when 
using manual wheels (0.85±0.04 m/s) compared to 
PAPAWs (0.76±0.06 m/s). 

� ��	� ���� $��	�����%� �	������ ����#�	������� ��� ���� ������	�
velocity was higher when using PAPAWs (RMS = 
0.2) compared to manual wheels (RMS = 0.1).  

� For ����$�������	�%�����$	�������	�% trials, the average 
magnitude of the angular velocity of the wheelchair 
was higher when using PAPAWs (0.83±0.02 rad/s) 
compared to manual wheels (0.81±0.06 rad/s).  

Analysis of these preliminary results confirmed the 
findings of the previous research regarding the challenges in 
maintaining a smooth ride with PAPAWs. To potentially 
improve the performance of PAPAW controllers in a future 
implementation, we examined the use of supervised 
classification techniques to determine the intention of users 
when propelling a wheelchair. The classification accuracy of 
these algorithms is presented in Table I. The test accuracy for 
all the algorithms was greater than 90%, with random forest 
having the best performance at 98% accuracy. The 
classification errors were associated with the transition points 
between the ����	�
���
�	
��� ��
��
��, ���
�	�
� �����, and 
���
�	�
� 
	
��� classes. The next step will be to use this 
accurate intention-classification algorithm to smooth out the 
desired p������������	
�������������#������� 

V. DISCUSSION 

The aim of this research was to examine and compare the 
kinematic characteristics of wheelchair propulsion when 
using manual and powered wheels in order to design a better 
PAPAW controller.  The results of our experiments agreed 
with the findings of previous research, that is, using 
gyroscope data from two wheels is a reliable technique to 
examine the kinematics of wheelchair propulsion. Moreover, 

98



  

TABLE I.  TRAINING AND TEST ACCURACY OF THE CLASSIFIERS 

(EXPERIMENT 1) 

 

the pattern of wheelchair propulsion that is shown in Fig. 3 
was found to be consistent with the findings of previous 
literature [19]. This includes the gradual increase of the linear 
velocity during the start-up phase, periodic increase and 
decrease of the linear velocity during the push and recovery 
phase, respectively, and gradual decrease of the linear 
velocity before a complete stop. Analysis of the results 
revealed further insights regarding the wheeling 
characteristics that are discussed below. 

By comparing the values of the angular velocity for the 
$��	�����%���#�������	����������������������&��he MWC user 
had better control over the direction of motion and performed 
a smoother ride compared to the second experiment where 
she conducted the same activities with PAPAWs. Potential 
reasons for this are that small variations of the side-to-side 
user input to the pushrims are magnified when using 
PAPAWs. Also, the side-to-side variations are more apparent 
when moving with higher linear velocities. 

When anticipating a turning movement, the user wheeled 
with lower linear velocities when using PAPAWs compared 
to manual wheels. One reason for this may be related to the 
fact that the user had better control over the direction of 
movement when wheeling at lower speeds (i.e. during 
preparation for a turn). However, this could be undesirable 
since the user has to be more cautious about the propulsion 
characteristics and may be inhibiting the natural propulsion 
pattern, as well as perhaps moving slower than desired. 

We found that the average maximum angular velocity of 
the wheelchair is higher when turning with a PAPAW 
comp�	���������!���"���#�	����
����������	�������	���������
����	����� ��� ���� ���	
�� intentions or due to the poor 

�	��	�����������������!
������	����	������������������	
��
lower stability (i.e., similar to the $��	�����% movement trials 
where using PAPAWs resulted in higher angular velocities 
and deviations from the straight path). 

The abovementioned characteristics of the wheelchair 
propulsion provided further evidence regarding some of the 
shortcomings of PAPAW controllers. Some examples 
include: deviating from the desired direction of motion or 
occasionally moving at lower speeds to maintain stability 
when using PAPAWs. This indicated that to fully realize a 

shared control system with contributions from both a user 
and two ����	��� �������	
�� ���������������� �o be considered 
and the system may need to be trained with the characteristics 
of each individual user. 

We speculated that the characteristics of MWC 
propulsion can be used as baseline knowledge to design more 
efficient PAPAW controllers. To study the feasibility of this 
approach, we used classification techniques to estimate user 
intentions regarding the direction of motion when navigating 
a MWC. As discussed before, the kinematics of wheelchair 
motion is determined by input forces to the system. In the 
absence of external forces (e.g., gravitational forces on sloped 
surfaces) or disturbances (e.g., uneven surfaces), the 
kinematics of movement can be determined by the user input 
force on the pushrims. Moreover, under ideal conditions, 
where a MWC user is not experiencing considerable 
difficulties with wheeling (e.g., no joint pain or major upper 
extremity asymmetries), user intentions regarding the speed 
and direction of movement are directly reflected in the 
kinematics of wheelchair motion. To create this ideal 
condition, we performed our experiments with an able-bodied 
participant in an indoor environment with no external 
disturbances, and on a flat surface. Therefore, we can assume 
that the collected kinematic data are relevant indicators of the 
participan�
�������������� 

The results of this study showed that all the proposed 
algorithms estimated the 4 pre-defined classes with high 
accuracy on a level, smooth surface. After analyzing the 
performance of the classification algorithms, we realized that 
the misidentified data points were at the transitions between 
���� $��#���� ��	������ ��	��	�%�� $��	����� ����%�� ���� $��	�����
	����%������������������`����������������������	����������	��������
exact and clear transition moment between straight and 
turning movements. Although the current performance of 
these classification algorithms is acceptable, introducing 
some complementary rules for the transition points could 
further improve the classification accuracy.  

As discussed before, the previously designed PAPAW 
controllers have fixed control rules and no adaptation 
capabilities (e.g., to the user characteristics or intentions). We 
believe that the proposed intention classification framework 
in this work may provide the capability for self-calibrated 
controllers that results in the generation of adaptive context-
aware power assist control for PAPAW users. The current 
dynamic user intention classification strategy has a run time 
of less than 25 microseconds and can be used in the future 
development of personalized learning-based real-time 
controllers for PAPAWs. 

The main limitation of this preliminary research is the 
single subject used for both experiments. Moreover, the data 
were collected for limited durations and for simple activities 
under ideal conditions (e.g., no external disturbances). To 
address the limitation of the current research, we need to 
monitor and analyze the environmental conditions (e.g., road 
inclination, type of surface) and their effects on the 
estimation process. Moreover, direct measurements of the 
user input force on pushrims can provide a more realistic 
�������������� ���� ���	
�� ����������� ��������� ��	�� ����� �������
be collected (e.g., from expert wheelchair users when 
performing real-life activities, including more types of 

Type of classifier Training accuracy Test accuracy 

Logistic regression 0.94 0.96 

Random forest 0.99 0.98 

Naive Bayes 0.90 0.92 

Extra trees 0.99 0.97 

Artificial neural network 

(ANN) 
0.95 0.97 

Support vector machine 

(SVM) 
0.96 0.93 
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movements, and for longer periods of time), processed (e.g., 
using appropriate filters and sensor fusion techniques), and 
analyzed (e.g., using dimensionality reduction methods to 
identify the optimal number and type of sensors needed to 
detect the user intentions). Despite these limitations, we 
believe that the findings of this study serve as preliminary 
evidence regarding the feasibility of designing learning-based 
controllers and provide a foundation for the future 
development of more comprehensive intention classification 
frameworks. 

VI. CONCLUSION 

We examined the kinematic features of manual and 
power-assisted pushrim-activated wheelchair propulsion and 
used these data to evaluate their performance. The 
comparison between the characteristics of manual and 
powered wheels further confirmed the limitations of PAPAW 
controllers. We aimed to overcome the shortcomings of the 
existing control strategies for PAPAWs that rely on fixed 
calibration parameters that are usually chosen based on the 
average biomechanical characteristics of wheelchair 
propulsion. We used kinematics of wheelchair movement and 
learning-based algorithms to develop an intention 
classification framework for wheelchair propulsion. 
Preliminary results of this work confirmed the high accuracy 
performance of the proposed classification algorithms. An 
accurate user intention-classification framework may be used 
�������	������������	
����������������	�����
���������#����� 
and thus smooth out unwanted deviations from their intended 
path. Future implementation of this framework in PAPAW 
controllers has the potential to enable an adaptive control 
through the adjustment of the ���������	
� linear and angular 
velocity. Future studies will be focused on the analysis of 
more realistic wheelchair propulsion conditions to verify the 
validity of the classification techniques.  
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