
Learning to Get Up
Tianxin Tao

taotianx@cs.ubc.ca
University of British Columbia

Vancouver, Canada

Matthew Wilson
mattwilsonmbw@gmail.com
University of British Columbia

Vancouver, Canada

Ruiyu Gou
reyget42@gmail.com

University of British Columbia
Vancouver, Canada

Michiel van de Panne
van@cs.ubc.ca

University of British Columbia
Vancouver, Canada

Figure 1: We develop a three-stage framework for generating natural and diverse human get-up behaviors using deep rein-
forcement learning. The learned control policies enable characters to get up from any initial fallen pose, and either slowly or
quickly.

ABSTRACT
Getting up from an arbitrary fallen state is a basic human skill. Ex-
isting methods for learning this skill often generate highly dynamic
and erratic get-up motions, which do not resemble human get-up
strategies, or are based on tracking recorded human get-up motions.
In this paper, we present a staged approach using reinforcement
learning, without recourse to motion capture data. The method first
takes advantage of a strong character model, which facilitates the
discovery of solution modes. A second stage then learns to adapt
the control policy to work with progressively weaker versions of
the character. Finally, a third stage learns control policies that can
reproduce the weaker get-up motions at much slower speeds. We
show that across multiple runs, the method can discover a diverse
variety of get-up strategies, and execute them at a variety of speeds.
The results usually produce policies that use a final stand-up strat-
egy that is common to the recovery motions seen from all initial
states. However, we also find policies for which different strategies
are seen for prone and supine initial fallen states. The learned get-
up control strategies often have significant static stability, i.e., they
can be paused at a variety of points during the get-up motion. We
further test our method on novel constrained scenarios, such as
having a leg and an arm in a cast.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530697

CCS CONCEPTS
• Computing methodologies→ Animation; Reinforcement
learning.

KEYWORDS
Physics-based character animation, learning curriculum

ACM Reference Format:
Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne. 2022.
Learning to Get Up. In Special Interest Group on Computer Graphics and
Interactive Techniques Conference Proceedings (SIGGRAPH ’22 Conference
Proceedings), August 7–11, 2022, Vancouver, BC, Canada. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3528233.3530697

1 INTRODUCTION
Getting up from the ground to a standing posture is a natural
and effortless skill for most humans. Simulated characters will
similarly need ways of recovering from the arbitrary fallen states
if they are to see broad adoption in simulated worlds. A common
current approach is to learn a policy that simply imitates a relevant
motion capture clip, which thereby bypasses the difficult problem
of needing to discover the best get-up strategy. However, humans
get up using a wide variety of styles and speeds, and can rapidly
improvise when faced with new circumstances, e.g., having a leg
in a cast. This quickly makes it impractical to capture all possible
get-up motions in advance.

The get-up problem can also be resolved without recourse to
motion capture data, and is known as a particularly challenging
problem to solve. The learned policies, however, often exhibit er-
ratic behaviors that are unlike those commonly observed in hu-
mans [Pinneri et al. 2020; Tassa et al. 2020]. We speculate that the
strong actuation limits made available in the simulated characters

https://doi.org/10.1145/3528233.3530697
https://doi.org/10.1145/3528233.3530697

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

allow for solution modes to be found, while also leading to these
overly dynamic and often-unnatural solutions.

Our work develops a learning framework that achieves more
natural get-up motions, based on the assumption that human get-up
motions are typically weak and slow. We do this using a three-stage
strategy: (i) learn a get-up control policy for a strong character,
which significantly eases the discovery of solutions modes; (ii) a
curriculum is used to adapt the control policy to a progressively
weaker character, as implemented via decreasing torque limits;
(iii) a control policy is learned which imitates the outcome of the
previous stage at speeds up to 5× slower than the original speed.

Ourmethod generates a diverse range of get-up styles across mul-
tiple runs. The discovered motions often have significant static sta-
bility, i.e., they can be fully paused at many points in time. Learned
control policies often exhibit a dominant get-up mode, e.g., always
first reverting to a prone position before getting up, but can also
exhibit multiple modes, e.g., using different strategies for prone and
supine initial states. We visualize the resulting motion trajectories
using t-distributed stochastic neighbor embedding (t-SNE) plots
to better understand their structure and diversity. Lastly, ablations
show the necessity of the various components of our approach. For
example, we find that directly introducing regularization terms for
control effort and motion speed leads to a failure to learn.

Our principal contributions are as follows: (1) We introduce a
method to learn get-up control policies, specifically targeting the
generation of natural get-up motions without recourse to motion
capture data. At the core of our framework is the idea to first
discover successful get-up modes, and then to learn weak-and-slow
versions of these modes. (2) We visualize and analyze the behavior
of multiple learned control policies across multiple initial states.
This reveals a diversity of strategies, as seen across the controllers
arising from multiple runs, as well as for a given controller in
response to different initial states. We release the code at https:
//github.com/tianxintao/get_up_control.

2 RELATEDWORK
Developing physics-based controllers for character animation is a
long-standing research problem. For a thorough history on this
topic, we refer the reader to a survey paper [Geijtenbeek and
Pronost 2012]. Early work demonstrates significant success on lo-
comotion tasks and often relies on compact manually-designed
feedback rules and finite state machines (FSM), e.g., [Coros et al.
2010; Hodgins et al. 1995;Wang et al. 2009, 2010; Yin et al. 2007]. Tra-
jectory optimization has also been usedwith considerable success to
generate locomotion control for both human and non-human char-
acters [Kim et al. 2021; Mordatch et al. 2013; Wampler et al. 2014].
Various motion tracking controllers have been proposed to imitate
available motion capture data using model-based approaches [Lee
et al. 2010, 2014; Ye and Liu 2010; Yin et al. 2007] or sampling-based
methods [Hämäläinen et al. 2014, 2015; Liu et al. 2016, 2015, 2010].

With the rapid progress of deep learning machinery, deep rein-
forcement learning (DRL) has become a promising method to learn
physics-based controllers. Heess et al. [Heess et al. 2017] proposed
a framework built on policy-gradient methods to learn a wide range
of locomotion skills although the resulting motion suffers from a
lack of realism. Many techniques have been proposed to enhance

the motion quality. Symmetry constraints have been applied as an
inductive bias to produce realistic motions [Abdolhosseini et al.
2019; Yu et al. 2018]. Yin et al. [Yin et al. 2021] proposed the use
of pose variational autoencoders in support of learning natural
athletic motions. Several works show that designing a curriculum
on the task parameters can assist in discovering complicated mo-
tions, including dressing and traversing stepping stones [Clegg et al.
2020; Xie et al. 2020]. Alternative actuation models with muscle
activation have also been proposed to learn more human-like mo-
tions [Jiang et al. 2019; Lee et al. 2019; Peng and van de Panne 2017].
Additionally, DRL is widely studied to learn tracking controllers
for reference motions. Peng et al. [Peng et al. 2018] proposed a
DRL-based framework with random state initialization (RSI) and
early termination to learn controllers capable of imitating highly di-
verse motions. DReCon [Bergamin et al. 2019] combines the motion
matching system and imitation controller to track the motion data.
Building on this, the idea has been extended to address the problem
of unlabeled motion data by training a recurrent neural network
to predict the reference pose in the next frame [Park et al. 2019].
A hybrid action space of torque and proportional-derivative (PD)
control is proposed to accelerate the training process [Chentanez
et al. 2018]. The methods have also recently been made much more
scalable, e.g., [Won et al. 2020].

Aside from physics-based approaches, kinematics-driven ani-
mation methods have also seen significant improvements along
with novel deep learning architectures in recent years. Generative
animation models are commonly built upon Variational Autoen-
coders (VAE) [Ling et al. 2020; Rempe et al. 2021], Long Short-Term
Memory (LSTM) [Harvey and Pal 2018; Harvey et al. 2020; Martinez
et al. 2017] and mixture of experts [Starke et al. 2019, 2020; Zhang
et al. 2018]. We refer readers to a survey paper for a more detailed
overview on this topic [Hoyet et al. 2021].

Learning a get-up controller has been of interest to computer
animation and robotics. Pioneering work by Morimoto et al. [Mori-
moto and Doya 1998] proposed a hierarchical reinforcement learn-
ing framework to master get-up motions on a simplified 2D walker
model. Kanehiro et al. [Kanehiro et al. 2007, 2003] developed a
get-up strategy with a manually designed contact graph and care-
ful mechanical calibration to the robot. Bilateral symmetry con-
straints were proposed to master natural stand-up behavior for
humanoid robots [Jeong and Lee 2016]. A wide range of sampling
techniques have been used to successfully discover get-up motions,
e.g., [Hämäläinen et al. 2014; Pinneri et al. 2020]. Despite their suc-
cess, these sampling methods commonly suffer from limited motion
quality and are less suited to online use from arbitrary initial states
than direct control inference via a DRL control policy. If relevant
motion capture data is available, motion trackingmethods with DRL
are also capable of generating get-up motions, e.g., [Chentanez et al.
2018; Merel et al. 2017]. Online trajectory optimization methods,
i.e., model predictive control, are also capable of generating get-up
motions for humanoids [Tassa et al. 2012], albeit with limited mo-
tion quality and, to the best of our knowledge, restricted to dynamic
versions of the motion. Multiple trajectory optimizations can be
structured in a tree-like fashion in order to support reuse of the
optimization results, for use from a variety of initial states [Borno
et al. 2017]. This uses large torque limits (300 Nm) and relies on
local PD-control feedback for stability, rather than closed-loop full

https://github.com/tianxintao/get_up_control
https://github.com/tianxintao/get_up_control

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

learn initial policy

strong-to-weak curriculum

Discover

Weaker

Slower

simulate
retime imitation

policy

𝑠0 ~ 𝐷fall

𝜋strong

𝜋weak

𝜋sl𝑜𝑤

𝜏slow𝜏fast

Figure 2: System overview. Our system explores an initial
policy with a strong character, then refines the motion from
a strong character to a weak character. Finally, we train an
imitation policy to track the retimed trajectory produced by
the weak policy.

state feedback. In contrast to prior work, we propose a framework
which does not need a reference motion, achieves fast runtime
performance from arbitrary fallen states on flat ground, and that
can produce slow-and-weak motions that are more representative
of most human get-up motions.

Human get-up motions are rich and varied in nature, with doc-
umented demonstrations of at least 52 ways to get up [YouTube
2013], including a variety of ways to get up without the intermedi-
ate use of hands [YouTube 2019]. A variety of the methods described
require a degree of athleticism and flexibility. At the other end of
the spectrum is a slow and low-effort strategy described in support
of recovery from falls in the elderly, e.g., [Adams and Tyson 2000].
Our work aims to demonstrate how current DRL algorithms can
learn controllers that can discover get-up strategies that can be at
the slower-and-weaker end of the spectrum of possible strategies.

3 PRELIMINARIES
We formulate the DRL problem as a standard Markov Decision
Process (MDP). MDP can be defined by states 𝑠𝑡 ∈ S, actions 𝑎𝑡 ∈
A, a dynamics function 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) denoting the probability of
reaching state 𝑠𝑡+1 with state-action combination (𝑠𝑡 , 𝑎𝑡), a discount
factor 𝛾 ∈ [0, 1] and a reward function 𝑅(𝑠𝑡 , 𝑎𝑡). The product of
DRL is a policy 𝜋𝜃 (𝑠𝑡) parameterized by 𝜃 interacting with an
environment. At each control timestep, the policy selects an action
𝑎𝑡 given the state 𝑠𝑡 . Then, the agent executes the action 𝑎𝑡 and the
current state 𝑠𝑡 is transformed into the next state 𝑠𝑡+1 according to
the dynamics function. A scalar feedback 𝑅(𝑠𝑡 , 𝑎𝑡) is returned as
the reward function. The training objective of DRL is to maximize
the expected return as:

𝐽 (𝜃) = E𝜏∼𝑝𝜃 (𝜏)

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
]

(1)

where 𝑝𝜃 (𝜏) represents the probability of experiencing trajectory
𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑎𝑇−1, 𝑠𝑇) following policy 𝜋𝜃 and T is a finite
integer denoting the episode length.

We choose Soft Actor-Critic (SAC) [Haarnoja et al. 2018] as the
DRL algorithm to train all the tasks in this work. SAC is widely
considered as a state of the art of model-free DRL method with
excellent sampling efficiency. Besides maximizing the expected re-
turn 𝐽𝜃 , SAC adopts the idea of entropy regularization to achieve a
balance between exploration and exploitation. SAC learns a policy
network 𝜋𝜃 (𝑠𝑡) as actor and an action-value function 𝑄𝜋

𝜙
(𝑠𝑡 , 𝑎𝑡)

as critic, which are commonly represented by multilayer percep-
trons (MLP). In locomotion tasks, the action usually represents the
torques of the joint motors, which are commonly normalized to
[−1, 1]. To match the action bounds, SAC usually applies a tanh
function on the output as the squashing function.

4 SYSTEM OVERVIEW
We illustrate our learning pipeline in Fig. 2. We split the overall
training process into three sequential stages: (1) initial policy ex-
ploration with strong characters; (2) low-energy motion discovery
through a strong-to-weak curriculum; and (3) slow motion refine-
ment viamotion imitation. Discovering get-upmotions from scratch
using DRL is particularly challenging in that the exploration pro-
cess can readily become trapped in local minima, which results in
variants of a kneelingmotion. To avoid the issue of local minima, we
learn an initial get-up controller 𝜋strong with a character with high
torque limits because such a character can explore a larger portion
of state and action space. By exploring diverse states and actions,
the DRL algorithm is more likely to encounter high reward region
to discover a get-up solution mode quickly. However, although a
high-strength character is beneficial for exploration, low-strength
motions are usually more natural. To enhance motion quality, we
therefore introduce a second stage to progressively learn a policy
𝜋weak suitable for much weaker versions of the character. In prac-
tice, we combine the training of the initial policy 𝜋strong and its
adaption to low-strength actions into one training process. Once
the test reward of 𝜋strong reaches a threshold 𝜔 , the strong-to-weak
curriculum is automatically activated.

After the strong-to-weak curriculum, we obtain a state-indexed
physics-based controller 𝜋weak generating get-up motions with low
energy cost. To generate slower movements, we introduce a motion
tracking objective for a third controller 𝜋slow to imitate the retimed
trajectories 𝜏slow . Given an initial state 𝑠0, we first generate a fast
get-up trajectory 𝜏fast using policy 𝜋weak . This is then retimed by
a factor of 𝜅, 𝜅 ∈ [0, 1]. The newly trained controller, 𝜋slow , can
produce motions up to 5× slower. At run time, users can specify
the value of 𝜅 to adjust the speed of get-up motions. Moreover, we
also train the controller 𝜋slow to maintain balance while standing
by tracking a manually designed standing pose.

Our learning pipeline can discover different get-up strategies
from prone and supine positions by simply initializing the training
with different seeds. We demonstrate and analyze the diverse get-up
behaviors using t-SNE plots. We also provide pseudocode for the
three stages in the supplementary material.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

5 ‘DISCOVER’ AND ‘WEAKER’ STAGES
In common physics-based simulators, the characters are modelled
with torque limits to define the strength of joint motors. Well-
designed torque limits play an essential role in the quality of motion.
Poorly designed torque limits can lead to unnatural motion [Merel
et al. 2018; Peng et al. 2018] and degraded learning performance [Ab-
dolhosseini 2019]. Therefore, we design the default torque limits T
according to documented values for humans [Grimmer 2015], and
scale them with respect to the weights of body parts.

We start the training with the designed torque limits T of the
humanoid character to explore an initial policy 𝜋strong . Then, the
initial policy 𝜋strong is refined through a strong-to-weak curriculum,
where we keep track and update the current torque limits of the
character. Once the accumulated minimum test reward of the policy
over multiple episodes reaches a specified threshold 𝜔 , we advance
the torque limit curriculum by setting the torque limits to be 𝛽𝑖 ×T
at the 𝑖𝑡ℎ stage of the curriculum, where 𝛽 ∈ [0, 1] is a hyperpa-
rameter. To enforce the torque limits on the humanoid character,
we design our policy at the 𝑖𝑡ℎ stage of the curriculum 𝜋weak to
output actions bounded by [−𝛽𝑖 , 𝛽𝑖] by modifying the squashing
function to 𝛽𝑖 × tanh(.). Alternatively, the character configuration
can be changed along with the curriculum in the simulation, and
the action space is always kept to [−1, 1]. However, the unchanged
action space will confuse the off-policy DRL algorithm because
actions collected at different stages of the curriculum then have
different meanings.

At the 𝑖𝑡ℎ stage of the strong-to-weak curriculum, we sample the
torque limit multiplier 𝛽𝑖 from a Gaussian distributionN(𝛽𝑖 , 𝜖), 𝜖 =

0.04 at the beginning of each episode. The torque limit multiplier
is treated as a sampled value rather than a constant because this
helps smooth the otherwise discrete nature of the curriculum.

Previous work commonly employs curriculum on the task objec-
tive such as jump heights and stepping stone positions [Xie et al.
2020; Yin et al. 2021], which specifies the ultimate task objective
with prior knowledge. In our case, the lowest feasible torque limits
for diverse get-up strategies are unknown. Thus, we trigger the end
of the curriculum based on the number of simulation steps taken
at the current stage of the curriculum. Intuitively, the curriculum
ends when the current stage requires more gradient steps than
a thresholdM, which indicates that the current task is too diffi-
cult under the torque limit constraints. Rather than a constant, the
thresholdM grows as curriculum advances since discovering very
low-energy get-up motions becomes more challenging with lower
torque limits. We associate the threshold with the number of steps
taken at the last stage of the curriculum 𝑁𝑖−1, and define the thresh-
old at stage 𝑖 ,M𝑖 according toM𝑖 = 𝑐𝑙𝑖𝑝 (1.5 × 𝑁𝑖−1, 𝑁min, 𝑁max),
where 𝑁min and 𝑁max are hyperparameters defining minimum and
maximum steps for all the curriculum stages.

6 ‘SLOWER’ STAGE
To produce slow human-like get-up motions, we introduce a third
stage that performs imitation-learning of the linearly retimed ver-
sion of the trajectories produced by the get-up policy 𝜋weak. Specif-
ically, on every episode reset to an initial state 𝑠0, we iteratively
query the get-up policy 𝜋weak to interact with the environment and
generate a state trajectory 𝜏fast = (𝑠0, 𝑠1, . . . , 𝑠𝑇) of length𝑇 . During

training, we sample a constant 𝜅 uniformly between 𝜅low and 𝜅high
(0 < 𝜅low ≤ 𝜅high < 1) as the retiming coefficient for slow get-up
trajectories 𝜏slow. For retiming, we use linear interpolation on the
state trajectory over [0,𝑇].

To accelerate training, random state initialization (RSI) [Peng
et al. 2018] can be used to initialize an episode from a randomly
chosen state on the reference trajectory. We adapt RSI to our acyclic
motions using a variant we call 𝜖-RSI. 𝜖 is a scalar between [0, 1].
With probability 1-𝜖 , RSI is adopted; otherwise, the episode is started
from the beginning. At training time, 𝜖-RSI increases the probability
of encountering states started from the beginning such that the
controller will focus more on achieving the get-up task from end
to end. We compare the performance of 𝜖-RSI, RSI and without
RSI in the supplementary material. In addition, we apply early
termination to the episode if the current state diverges too much
from the reference motion.

Given a retimed reference trajectory, the policy 𝜋slow aims to
imitate it. We choose the PD-controller as the actuation model to
compute the joint motor torque. To compute the target orientations
𝑞, the policy 𝜋slow outputs the a residual value 𝑞𝑟 added to the
reference orientation 𝑞′ supplied by the reference trajectory 𝜏slow:
𝑞 = 𝑞𝑟 + 𝑞′. The user can adjust the speed of the get-up motion by
controlling the value of the retiming coefficient 𝜅.

After the get-up motion, the most common and natural succeed-
ing movement is that of quiescent stance. In support of this, we
also train the controller 𝜋slow to maintain balance in a natural pose.
The training objective is switched to simply track a generic static
standing pose after 𝑇

𝜅 steps into the episode.

7 EXPERIMENT SETUP AND TASK
SPECIFICATION

We test the proposed method and explore its performance on a reg-
ular humanoid model, as well as a modified humanoid model with
a leg and an arm in a cast and a humanoid character with a missing
arm. This involves the design of the rewards for the Discover and
Weaker stages, as well as the imitation rewards specific to Slower
stage. We adopt the reward function design proposed in [Tassa et al.
2020] for nearly all the training tasks in this work. In the interest
of space, we refer the reader to the supplemental material for the
low-level details of these generic types of rewards as well as the
implementation details.

The get-up task starts from a rag-doll fall at 1.5𝑚 above the
ground with a randomized pose. During the rag-doll fall, actions are
randomly sampled according to 𝑎 ∼ N(0, 0.1), to model additional
stochasticity in the initial states. The rag-doll fall stage lasts for a
fixed duration of 80 control steps when the humanoid collides with
the ground and remains in a lying pose on the ground afterwards.
Then, the controller begins to provide the joint motor torques at
each control timestep to accomplish the get-up objective.

Exploring Initial Policies and its Low-energy Variants. The charac-
ter mainly focuses on finding a coarse get-up solution by maximiz-
ing the head height. Each training episode ends when it exceeds
250 steps without any early termination criteria. The state variable
𝑠weak contains the following attributes: (1) joint angles and veloci-
ties in the local coordinate, (2) head height, center of mass velocity
in the world coordinate, (3) end-effector positions in the egocentric

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

coordinate, (4) projection of the torso orientation vector to the z axis
of the world coordinate, 𝑜torso, (5) the character strength parameter
at 𝑖𝑡ℎ stage of the curriculum, 𝛽𝑖 , 0 ≤ 𝛽 ≤ 1. The state variable is
designed to be agnostic to the facing direction of the humanoid. We
further explain the details of the state variables in the supplemen-
tary material. The action space is normalized to [−𝛽𝑖 , 𝛽𝑖], which is
scaled by the default torque limits T in the simulation to compute
the joint motor torques.

The reward function consist of the following terms: (1) 𝑟h: maxi-
mize the head height, (2) 𝑟straight: keep the torso vertically straight,
(3) 𝑟vxycom : prevent the character from walking or running, (4) 𝑟feet:
constrain the distance between two feet. The detailed explanation
for each reward term can be found in App. B. The final reward for
the get-up task can be summarized as:

𝑅weak = 𝑟h · 𝑟straight · 𝑟vxycom · 𝑟feet . (2)

Slow Get-up Motions. We aim to train a get-up controller receiv-
ing different speed commands by specifying the retiming coefficient
𝜅. We train a motion tracking controller 𝜋slow with DRL by imi-
tating the retimed trajectory 𝜏slow. To keep track of the retimed
trajectories, we maintain two simulation environments in parallel:
one environment that provides the fast reference trajectory for
retiming by iteratively querying the previous weak policy 𝜋weak,
another environment that tracks the retimed slow trajectories 𝜏slow.
At the beginning of each episode, we obtain a fast get-up trajec-
tory 𝜏𝑓 𝑎𝑠𝑡 until the head height ℎhead is above 1.2𝑚, which is later
retimed to a slower trajectory 𝜏slow through linear interpolation.
The training objective is to minimize the distance over a few key
attributes between the controlled character motion and the retimed
kinematic motion. The maximum length of each episode is deter-
mined by the fast trajectory length𝑇 and the retiming coefficient 𝜅
as 𝑇

𝜅 . In addition, the episode will be terminated when the center
of mass height deviates from the reference by 0.5𝑚.

We design the imitation reward 𝑅slow consisting of the following
elements: (1) 𝑟com: track the center of mass height, (2) 𝑟ori: track
the torso orientation vectors projected to the vertical axis, (3) 𝑟hip:
track the hip joint velocity to avoid oscillatory behavior. The precise
definition of each term can be found in App. B. Thus, the final
reward for the imitation phase can be expressed as:

𝑅slow = 𝑟com · 𝑟ori ·
𝑟hip + 2

3
(3)

Furthermore, we train the standing task to maintain balance con-
currently with the same policy 𝜋slow by switching to a new reward
function 𝑅balance after 𝑇

𝜅 steps into the episode. The controller is
trained to maintain balance for another 100 timesteps unless early
termination is triggered. The early termination will be met if the
center of mass height is below 0.5𝑚. We manually designed a sin-
gle standing pose 𝑞 for the imitation policy 𝜋slow to mimic. The
designed standing pose 𝑞 is concatenated to the end of reference
trajectory 𝜏slow. The reward function for the balancing task mainly
reuses reward terms from previous tasks, including 𝑟vxycom , 𝑟straight
and 𝑟com. We implement a new reward term 𝑟pose to track the joint
rotations of the designed standing pose. Details of the standing
reward design are provided in App. B. The final reward for the

(a) Test reward during training
(b) Torque limits during train-
ing

Figure 3: a) Average test reward curve for the strong-to-weak
curriculum and different values of the fixed torque limits. b)
Value of the torque limits in training with a curriculum. The
results are averaged over 10 runs.

rotation task can be expressed as:

𝑅balance = 𝑟vxycom · 𝑟straight · 𝑟com · 𝑟pose (4)

We also include additional variables in the state space to facilitate
the training. In addition to 𝑠weak, we select several attributes at two
future steps from the reference trajectory 𝜏slow to augment the
state space. The selected attributes are the local joint rotations 𝑞,
the center of mass height ℎcom and the vertical projection of the
torso orientation vector𝑜torso. The concatenation of those attributes
forms a vector 𝑠 ′𝑡 = [𝑞𝑡 , ℎcomt , 𝑜torsot]. The state space at timestep
𝑡 can be eventually expressed as: 𝑠slow = [𝑠fast, 𝑠 ′𝑡+1, 𝑠

′
𝑡+5]. During

the get-up phase, the future pose is provided by the retimed slow
trajectory 𝜏slow at the specified timestep, which is later replaced
with the standing pose 𝑞 for the balancing stage. This setup informs
the policy of the short-term and long-term goals at the same time.

Get-up Variants. Besides the standard humanoid character, we
also explore and study the generalization ability of our framework
on some variants of the humanoid character. We learn get-up mo-
tions for a character with a leg and an arm in a cast and a character
with a missing arm. To simulate the character with a leg and an
arm in a cast, we lock the left elbow joint and the right knee joint
to keep those limbs straight throughout the motion. We make no
further modifications to the environment and algorithm design
except for removing corresponding joint information from the state
space and control signal from the action space.

8 RESULTS
We first verify the hypothesis that large torque limits are essential
to exploration. Low torque limits can prevent the discovery of
get-up solutions due to limited exploration. We demonstrate that
gradually reducing the torque limits with a curriculum can learn a
low-energy solution mode. Then, we show that learning slow get-
up motions can further improve the naturalness of the motion. Also,
we exploit the future pose conditioned policy 𝜋slow to pause the get-
up motions in selected statically-stable poses. Finally, we provide
visualization tools to analyse the behavior of each controller and
the diversity of the learnt solution modes. We refer readers to the
supplementary videos for a clear demonstration of the resulting
motions.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

(a) Controller A

(b) Controller B

(c) Controller C

(d) Controller D

Figure 4: Get-up motions of four controllers. Each 8 figures
in a row show the get-up motion in one episode from the
rag-doll fall to the standing phase. Two runs starting from
supine and prone positions are shown for each controller.

8.1 Strong-to-weak Curriculum

Figure 5: One get-up controller adopting different strategies
starting from the supine and prone positions.

We demonstrate the learning curves for both fixed torque limits
and strong-to-weak curriculum in Fig. 3a and the value of torque
limits with the curriculum in Fig. 3b. Fig. 3a verifies the importance
of proper torque limits for exploring a coarse solution mode. When

the torque limit is fixed at 60%, 50% and 40% of the default torque
limit T respectively, the controller is likely to fail to discover any
get-up solutionmode. By employing the strong-to-weak curriculum,
the agent first learns a solution mode and then refines the motion
while adapting to the decreasing torque limits. As shown in Fig. 3b,
the final torque limit with curriculum drops to below 60% of the
default torque limit T on average. The strong-to-weak curriculum
achieves comparable learning speed as the full strength model but
produces a more natural get-up motion.

The strong-to-weak curriculum is terminated according to the
rule described in Sec. 5. We find that the DRL policy tends to first
adopt a fixed solution mode first and then refines it. Launching
experiments with different seeding functions usually yields diverse
get-up styles. Therefore, those get-up motions will end up with
different final torque limits. As a subjective observation, we find the
final torque limits to be correlated to the naturalness of the get-up
motions. In our experiments, get-up strategies ending with torque
limits ranging from 40% to 60% are usually perceived asmore natural
than those terminating with high torque limits (above 70%). We
include the get-up motions of several 𝜋weak in the supplementary
video.

8.2 Slow Get-up Motion
We next show results at medium speed (𝜅 = 0.5), from the initial
rag-doll fall to getting up from the ground and finally remaining
to standing. Fig. 4 shows four different controllers labelled as A,
B, C and D starting from two initial states. Each controller either
prefers to get up from the supine position or the prone position. If
a controller prefers to get up in a supine position but starts from a
prone position, the character commonly first rolls over, then gets
up, and vice versa. However, exceptions also exist that attempt to
get up from supine and prone positions using different strategies,
as shown in Fig. 5.

Our controller can produce get-up motions with different speeds
by adjusting the retiming coefficient 𝜅. To analyse the behavior of
controllers running at different speeds, we plot the trajectory of
the head in the lateral space. Fig. 6 plots the head height versus
the distance to the origin projected to the 𝑥𝑦 plane for each con-
troller we showed in Fig. 4. The slow and fast trajectories share
a similar path with the reference trajectory but make their adap-
tions to accomplish the tasks, which indicates the necessity to
learn a physics-based controller 𝜋slow rather than merely being an
identical-but-slower copy of the reference motion 𝜏fast.

To better understand the structure and diversity of the learned
get-up strategies, we project features of the state to a 3D space by
t-SNE, and generate plots of the trajectory in 3D space. More details
regarding the t-SNE implementation are included in App. G. Fig. 7a
shows the get-up trajectories for a given controller for four different
initial states. These begin at different points in the embedded space
and then merge to a single trunk because the given controller tends
to adopt the same strategy to get up, and eventually arrive at the
region representing the standing pose. Fig. 7b reveals the differences
across multiple controllers starting from an identical initial state.
The projected trajectories begin with the same point after the rag-
doll stage, then diverge to different paths to get up from the ground,
and finally merge to the standing pose. Fig. 7c shows the t-SNE

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

(a) Controller A (b) Controller B (c) Controller C (d) Controller D

Figure 6: Head trajectories in the lateral space of the character. Each plot includes the head trajectory in the lateral view for
slow get-up, fast get-up and reference motion. There are noticeable differences between the three trajectories. We choose
𝜅 = 0.25, 0.75 for the slow and fast trajectories respectively. Each marker in the path represents one control timestep.

(a) Different Initial States (b) Different Controllers

(c) Different Controllers

Figure 7: t-SNE plots of trajectories. Fig. a) shows four trajec-
tories from the same controller starting from four different
initial states. Fig. b) shows five trajectories from different
controllers starting from the same initial state. Fig. c) shows
four trajectories from the controller using different strate-
gies when starting from supine and prone positions. The
starting states are circled while the final states are squared.

trajectory plot for the controller adopting different strategies in
supine and prone positions. Trajectories starting from supine and
prone positions take different paths to the standing region in the
embedded space.

8.3 Paused Get-up Motion
As the slow get-up policy 𝜋slow is conditioned on two future poses,
we can manipulate the reference trajectory 𝜏fast in various ways
other than uniform retiming. One idea is to repeat one specific
state 𝑠 ′ in the reference trajectory multiple times such that the
policy aims to reach the repeated pose 𝑞 first, then maintains the
pose for a while, and finally continues the rest of the get-up motion.
This setting creates a get-up motion paused at the repeated state.

(a) Controller A (b) Controller B (c) Controller C (d) Controller D

Figure 8: Paused get-up states. Each picture shows one state
that the get-up motion can be paused at.

Without a future pose conditioned policy, such paused motion is
nearly impossible to achieve with a purely state-indexed policy. As
a result, our motion can be paused and continued in many statically
stable states as shown in Fig. 8, although the character loses balance
when asked to pause in more dynamical states. We include the get-
up motions with pauses in the supplementary video. In general, we
find that the generated get-up motions are usually more statically
stable at the beginning and become dynamic and less stable near
the end of the get-up.

8.4 Get-up Motion for Humanoid Variants
Following the same pipeline, we can generate get-upmotions adapted
to a humanoid character with a leg and an arm in a cast and a hu-
manoid character with a missing arm. Fig. 9 and Fig. 10 illustrate the
discovered get-up motions for those special characters respectively.
The resulting motion is also demonstrated in the supplementary
video. We show that these irregular humanoid models can still get
up at various commanded speeds. Since two joints are removed for
the character with limbs in casts, it adopts a get-up strategy that
relies on the remaining limbs to gain momentum, while using the
limbs in casts for balance at certain stages. The policy developed
with the character with a missing arm attempts to get up by pushing
against the ground using one arm only. These results show that our
pipeline is not restricted to a specific model but can be applied to
situations where motion capture data is hard to obtain.

9 ABLATION STUDIES
We conduct multiple ablation studies to investigate the role of
several components in our system, and explore alternative methods

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

Figure 9: Get-up motions for humanoid with a leg and an
arm in a cast. The left elbow joint and right knee joint are
locked throughout the motion. The corresponding limbs are
rendered in green. Each row of images shows the get-up
motion from either the supine position or the prone position.

Figure 10: Get-up motions for humanoid with missing left
arm. Each row of images shows the get-upmotion from either
the supine position or the prone position.

to learn weak and slow get-up motions via reward engineering. We
experiment with removing the strong-to-weak curriculum and slow
get-up imitation respectively. As a result, we generally observe that
the resulting motions are of lower quality. We note that careful
reward design itself is not sufficient to learn a weak and slow get-up
motion. Relevant videos are included in the supplementary material.

High Strength Get-up Motion. We first illustrate that training
with high-strength characters tends to find an unnatural and highly-
dynamic get-up motion. We train the initial policy 𝜋strong without
any modification on the torque limit. The results are best observed
in the supplemental video. The strong-to-weak curriculum elimi-
nates excessively aggressive and abrupt motions.

Weak Motions Without a Curriculum. As discussed earlier (§8.1),
starting the training with fixed low torque limits typically traps the
policy in local minima and fails to find any suitable solution mode.

Slow Get-up Imitation Without Curriculum. We also evaluate an
ablation where we skip the strong-to-weak curriculum and proceed
directly to imitating retimed versions of a strong policy 𝜋strong. We
find that 𝜋strong provides excessively-dynamic get-up motions for
𝜋slow to imitate. As a result, the character fails to get up at low
speeds. Although 𝜋slow sometimes succeeds in fast get-up tasks,
the motion remains overly dynamic and awkward.

Weak and Slow Get-up Motion Alternatives. Instead of an explicit
imitation objective, motion constraints can often be embedded
in the reward function design. Adding an energy cost term has
been proposed in [Fu et al. 2021; Ma et al. 2021; Xie et al. 2020] to
improve motion quality. However, we find that adding an energy
cost without the strong-to-weak curriculum has minimal effect

on the get-up motion. In addition, we experiment with adding a
reward term to penalize high joint velocities for learning slow get-
up motions. However, such a reward design either has negligible
effects on the get-up speeds with fewer weights on this term or
leads to training instability with more weights on it. We further test
the option of annealing the weights of the energy cost term and the
velocity regularization term linearly. Nevertheless, the resulting
motions are not clearly more statically stable and slowed down. We
include the corresponding motions in the supplementary video.

10 CONCLUSION
We have presented a framework based on deep reinforcement learn-
ing to produce natural human get-up from the ground motions
without recourse to motion capture data. The final learned policy
can yield realistic get-up motions at different speeds and from arbi-
trary initial states. We first exploit the benefits of a high-strength
character to discover a particular get-up strategy. The initial policy
is then refined with a progressively weaker character to enhance
motion quality. Lastly, our method learns an imitation controller to
get up at much slower speeds, including pausing in intermediate
statically-stable states. We visualize the diversity across different
controllers and the behavior from different initial states.

Our method has a variety of remaining limitations, pointing to
directions for future work. Currently our method still requires a
separate simulation using 𝜋weak in order to generate the reference
trajectory that is used to condition 𝜋slow. It should be possible to
learn a single policy that is directly conditioned on the current state
and 𝜅, mainly via a distillation. This would eliminate the need to
store and use 𝜋weak. We leave this as future work.

Our learning framework can discover, in a tabula rasa fashion,
diverse get-up motions, across different runs with different random-
ized policy initializations. However, there is currently no means to
provide user control. We wish to explore various possible methods
for adding control over the choice of get-up strategy, and more
general control over the style. One interesting strategy would be
to learn a set of 𝑁 controllers, and then have a user specify their
preference for the desired get-up strategy employed from different
initial states, and to then reintegrate this into a single controller.

Humans need to get up from chairs, sofas, bathtubs, car seats,
variable terrain, and a variety of other constrained situations, e.g.,
getting up while wearing skates or skis. Humans are extremely
adept at finding good solutions to these problems. An exciting
direction for future work will be to produce controllers that can
generalize well to this broad range of circumstances.

ACKNOWLEDGMENTS
We thank Sheldon Andrews, Anthony Frezzato, and Arsh Tangri
for many useful discussions about the getup problem.

REFERENCES
Farzad Abdolhosseini. 2019. Learning locomotion: symmetry and torque limit considera-

tions. Ph.D. Dissertation. University of British Columbia. https://doi.org/10.14288/
1.0383251

Farzad Abdolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and Michiel van de
Panne. 2019. On learning symmetric locomotion. In Motion, Interaction and Games.
1–10.

Jacqueline MG Adams and Sarah Tyson. 2000. The Effectiveness of Physiotherapy to
Enable an Elderly Person to Get up from the Floor: A single case study. Physiotherapy

https://doi.org/10.14288/1.0383251
https://doi.org/10.14288/1.0383251

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

86, 4 (2000), 185–189.
Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.

DReCon: data-driven responsive control of physics-based characters. ACM Trans-
actions On Graphics (TOG) 38, 6 (2019), 1–11.

Mazen Al Borno, Michiel Van De Panne, and Eugene Fiume. 2017. Domain of attraction
expansion for physics-based character control. ACM Transactions on Graphics (TOG)
36, 2 (2017), 1–11.

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and
Stefan Jeschke. 2018. Physics-based motion capture imitation with deep reinforce-
ment learning. In Proceedings of the 11th annual international conference on motion,
interaction, and games. 1–10.

Alexander Clegg, Zackory Erickson, Patrick Grady, Greg Turk, Charles C Kemp, and
C Karen Liu. 2020. Learning to collaborate from simulation for robot-assisted
dressing. IEEE Robotics and Automation Letters 5, 2 (2020), 2746–2753.

Stelian Coros, Philippe Beaudoin, and Michiel Van de Panne. 2010. Generalized biped
walking control. ACM Transactions On Graphics (TOG) 29, 4 (2010), 1–9.

Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak Pathak. 2021. Minimizing
energy consumption leads to the emergence of gaits in legged robots. arXiv preprint
arXiv:2111.01674 (2021).

Thomas Geijtenbeek and Nicolas Pronost. 2012. Interactive character animation using
simulated physics: A state-of-the-art review. In Computer graphics forum, Vol. 31.
Wiley Online Library, 2492–2515.

Martin Grimmer. 2015. Powered Lower Limb Prostheses. Ph.D. Dissertation. https:
//doi.org/10.13140/RG.2.2.15449.47200

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning. PMLR, 1861–1870.

Perttu Hämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and Jaakko Lehti-
nen. 2014. Online motion synthesis using sequential monte carlo. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–12.

Perttu Hämäläinen, Joose Rajamäki, and C Karen Liu. 2015. Online control of simulated
humanoids using particle belief propagation. ACM Transactions on Graphics (TOG)
34, 4 (2015), 1–13.

Félix G Harvey and Christopher Pal. 2018. Recurrent transition networks for character
locomotion. In SIGGRAPH Asia 2018 Technical Briefs. 1–4.

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Transactions on Graphics (TOG) 39, 4 (2020), 60–1.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, ZiyuWang, SM Eslami, et al. 2017. Emergence of locomotion
behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017).

Jessica K Hodgins, Wayne L Wooten, David C Brogan, and James F O’Brien. 1995. Ani-
mating human athletics. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. 71–78.

Ludovic Hoyet, Lucas Mourot, François Le Clerc, François Schnitzler, and Pierre Hellier.
2021. A Survey on Deep Learning for Skeleton-Based Human Animation. In
Computer Graphics Forum.

Heejin Jeong and Daniel D Lee. 2016. Efficient learning of stand-up motion for
humanoid robots with bilateral symmetry. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 1544–1549.

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of
biologically realistic human motion using joint torque actuation. ACM Transactions
On Graphics (TOG) 38, 4 (2019), 1–12.

Fumio Kanehiro, Kiyoshi Fujiwara, Hirohisa Hirukawa, Shin’ichiro Nakaoka, and
MitsuharuMorisawa. 2007. Getting upmotion planning usingmahalanobis distance.
In Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE,
2540–2545.

Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada, Shuuji Kajita,
Kazuhito Yokoi, Hirohisa Hirukawa, Kazuhiko Akachi, and Takakatsu Isozumi.
2003. The first humanoid robot that has the same size as a human and that can lie
down and get up. In 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), Vol. 2. IEEE, 1633–1639.

Nam Hee Kim, Hung Yu Ling, Zhaoming Xie, and Michiel van de Panne. 2021. Flexible
Motion Optimization with Modulated Assistive Forces. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 4, 3 (2021), 1–25.

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-
actuated human simulation and control. ACM Transactions On Graphics (TOG) 38,
4 (2019), 1–13.

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-driven biped control. In ACM
SIGGRAPH 2010 papers. 1–8.

Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion
control for many-muscle humanoids. ACM Transactions on Graphics (TOG) 33, 6
(2014), 1–11.

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. 2020. Character
controllers using motion vaes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
40–1.

Libin Liu, Michiel Van De Panne, and KangKang Yin. 2016. Guided learning of control
graphs for physics-based characters. ACM Transactions on Graphics (TOG) 35, 3
(2016), 1–14.

Libin Liu, KangKang Yin, and Baining Guo. 2015. Improving sampling-based motion
control. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 415–423.

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. In ACM SIGGRAPH 2010 papers. 1–10.

Li-Ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and KangKang Yin. 2021. Learning
and Exploring Motor Skills with Spacetime Bounds. In Computer Graphics Forum,
Vol. 40. Wiley Online Library, 251–263.

Julieta Martinez, Michael J Black, and Javier Romero. 2017. On human motion pre-
diction using recurrent neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2891–2900.

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tiru-
mala, Nicolas Heess, and Greg Wayne. 2018. Hierarchical visuomotor control of
humanoids. arXiv preprint arXiv:1811.09656 (2018).

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg
Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion capture
by adversarial imitation. arXiv preprint arXiv:1707.02201 (2017).

Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
human lower limbs using contact-invariant optimization. ACM Transactions on
Graphics (TOG) 32, 6 (2013), 1–8.

Jun Morimoto and Kenji Doya. 1998. Reinforcement learning of dynamic motor se-
quence: Learning to stand up. In Proceedings. 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications
(Cat. No. 98CH36190), Vol. 3. IEEE, 1721–1726.

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-Simulate Policies From Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (2019).

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

Xue Bin Peng and Michiel van de Panne. 2017. Learning locomotion skills using
deeprl: Does the choice of action space matter?. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 1–13.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler,
Michal Rolinek, and Georg Martius. 2020. Sample-efficient Cross-Entropy Method
for Real-time Planning. arXiv preprint arXiv:2008.06389 (2020).

Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and
Leonidas J Guibas. 2021. HuMoR: 3D Human Motion Model for Robust Pose
Estimation. arXiv preprint arXiv:2105.04668 (2021).

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans. Graph. 38, 6 (2019), 209–1.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 54–1.

Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 4906–4913.

Yuval Tassa, Saran Tunyasuvunakool, AlistairMuldal, YotamDoron, Siqi Liu, Steven Bo-
hez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess. 2020. dm_control:
Software and Tasks for Continuous Control. arXiv:2006.12983 [cs.RO]

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 5026–5033.

Kevin Wampler, Zoran Popović, and Jovan Popović. 2014. Generalizing locomotion
style to new animals with inverse optimal regression. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 1–11.

Jack M Wang, David J Fleet, and Aaron Hertzmann. 2009. Optimizing walking con-
trollers. In ACM SIGGRAPH Asia 2009 papers. 1–8.

Jack M Wang, David J Fleet, and Aaron Hertzmann. 2010. Optimizing walking con-
trollers for uncertain inputs and environments. ACM Transactions on Graphics
(TOG) 29, 4 (2010), 1–8.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A scalable approach to
control diverse behaviors for physically simulated characters. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 33–1.

Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. 2020. ALL-
STEPS: Curriculum-driven Learning of Stepping Stone Skills. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 213–224.

Yuting Ye and C Karen Liu. 2010. Optimal feedback control for character animation
using an abstract model. In ACM SIGGRAPH 2010 papers. 1–9.

KangKang Yin, Kevin Loken, and Michiel Van de Panne. 2007. Simbicon: Simple biped
locomotion control. ACM Transactions on Graphics (TOG) 26, 3 (2007), 105–es.

Zhiqi Yin, Zeshi Yang, Michiel Van De Panne, and KangKang Yin. 2021. Discovering
diverse athletic jumping strategies. ACM Transactions on Graphics (TOG) 40, 4
(2021), 1–17.

YouTube. 2013. The Stand Up Challenge: 52 Ways to Get Up. https://www.youtube.
com/watch?v=1Af1DtnTLs8

YouTube. 2019. No Hands Get Ups — 7 Get up Variations. https://www.youtube.com/
watch?v=h376pQ6uFt4

https://doi.org/10.13140/RG.2.2.15449.47200
https://doi.org/10.13140/RG.2.2.15449.47200
https://arxiv.org/abs/2006.12983
https://www.youtube.com/watch?v=1Af1DtnTLs8
https://www.youtube.com/watch?v=1Af1DtnTLs8
https://www.youtube.com/watch?v=h376pQ6uFt4
https://www.youtube.com/watch?v=h376pQ6uFt4

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

Wenhao Yu, Greg Turk, and C Karen Liu. 2018. Learning symmetric and low-energy
locomotion. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics (TOG) 37,
4 (2018), 1–11.

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Supplemental Material for Learning to Get Up

A PSEUDOCODE
We provide the pseudocode of the Discover and the Weaker stages
in Algorithm 1, and that of the Slower stage in Algorithm 2.

ALGORITHM 1: Discover and Weaker Stages
Input: Torque limit multiplier 𝛽 , Minimum steps 𝑁𝑚𝑖𝑛 , Maximum

steps 𝑁𝑚𝑎𝑥 , Policy 𝜋 , Threshold 𝜔
// Initialize parameters;
𝑖 ← 0;
𝑁 ← 0;
𝑁𝑐 ← 0;
𝛽 ← 1.0;
Initialize initial state to 𝑠 ;
for step = 1, . . . , max_steps do

𝑎 ∼ 𝜋 (𝑠, 𝛽) ;
(𝑠′, 𝑅,𝑑𝑜𝑛𝑒) = ForwardSimulation(s,a);
Save (s, a, R, s’, done) in the replay buffer 𝐷 ;
𝑠 ← 𝑠′;
Perform SAC update using data from 𝐷 ;
𝑁𝑐 = 𝑁𝑐 + 1;
if step % test_frequency == 0 then

𝑅𝑡𝑒𝑠𝑡 = TestPolicy(𝜋);
// Advance curriculum;
if 𝑅𝑡𝑒𝑠𝑡 > 𝜔 then

𝑖 = 𝑖 + 1;
// Update termination criteria;
𝑁 = Clip(𝑁𝑐 , 𝑁 _𝑚𝑖𝑛, 𝑁 _𝑚𝑎𝑥) ;
𝑁𝑐 = 0;

else
// Terminate curriculum;
if 𝑁𝑐 > 𝑁 then

End Training;
end

end
end
if done then

// Sample the torque limit multiplier ;
𝛽 ∼ N(𝛽𝑖 , 𝜖) ;
𝑠 = ResetEpisode();

end
end

B DETAILED REWARD DESIGN
The overall reward function 𝑅(𝑠𝑡 , 𝑎𝑡) is the product of multiple
reward terms 𝑟 between 0 and 1. As shown in Figure. 11, each reward
term 𝑟 is calculated by a function of input value 𝑖 defined by three
parameters bounds 𝑏, margin𝑚 and value 𝑣 as 𝑓 (𝑖, 𝑏,𝑚, 𝑣). Bounds
𝑏 = [𝑏𝑙 , 𝑏𝑢] defines the region where the reward term is 1 if the
input value 𝑖 is inside. The reward value will drop smoothly outside
the bounds following a Gaussian curve until reaching value 𝑣 at a
distance of margin𝑚 [Tassa et al. 2020].

ALGORITHM 2: Slower Stages
Input: Weak Policy 𝜋𝑤𝑒𝑎𝑘 , Low speed limit 𝑘𝑙𝑜𝑤 , High speed limit

𝑘ℎ𝑖𝑔ℎ

𝑑𝑜𝑛𝑒 ← 𝑇𝑟𝑢𝑒 ;
for step = 1, . . . , max_steps do

if done then
𝑠 = ResetEpisode();
𝜏𝑓 𝑎𝑠𝑡 = GenerateTrajectory(s, 𝜋𝑤𝑒𝑎𝑘);
𝑘 ∼ U(𝑘𝑙𝑜𝑤 , 𝑘ℎ𝑖𝑔ℎ𝑡) ;
𝜏𝑠𝑙𝑜𝑤 = Retime(𝜏𝑓 𝑎𝑠𝑡, k);

end
𝑎 ∼ 𝜋𝑠𝑙𝑜𝑤 (𝑠, 𝜏𝑠𝑙𝑜𝑤) ;
(𝑠′, 𝑅,𝑑𝑜𝑛𝑒) = ForwardSimulation(s,a);
Save (s, a, R, s’, done) in the replay buffer 𝐷 ;
𝑠 ← 𝑠′;
Perform SAC update to 𝜋𝑠𝑙𝑜𝑤 using data from 𝐷 ;

end

Figure 11: Reward Function 𝑓 (𝑖, 𝑏, 𝑛, 𝑣). The general reward
function is bounded in [0, 1] and specified by three parame-
ters, bounds 𝑏 = [𝑏𝑙 , 𝑏𝑢], margin 𝑣 and ending value 𝑣 .

B.1 Exploring Initial Policies and its
Low-energy Variants.

One direct indication of the get-up behavior is the head height.
Therefore, the agent will be rewarded 1 once the head height is
above a threshold. As the character gets up from the ground, the
head height reward grows up to 1 until reaching the threshold. We
set the reward function as follows:

𝑟h = 𝑓 (𝑖 = ℎhead, 𝑏 = [1.55, 𝑖𝑛𝑓],𝑚 = 0.37, 𝑣 = 0.1) . (5)

Additionally, the character is also encouraged to keep the torso
vertically straight when getting up. We add a reward based on the
vertical projection of the unit torso up vector, i.e. 𝑧uptorso. The reward
is only applied when the center of mass height ℎ𝑐𝑜𝑚 is above 0.5𝑚
as:

𝑟𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 =


𝑓 (𝑖 = 𝑧

up
torso, 𝑏 = [0.9, 𝑖𝑛𝑓],𝑚 = 1.9, 𝑣 = 0.0),

if ℎcom > 0.5

1.0, otherwise

.

(6)
The velocity is one way to distinguish a walking or running

motion from a get-up motion. To prevent the agent from being
rewarded for walking or running, we add a reward term constrain-
ing on the center of mass velocity projected on the horizontal

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

plane 𝑣xycom = [𝑣xcom, 𝑣
y
com]:

𝑟𝑣xycom
=

1
2

∑︁
𝑣′∈𝑣xycom

𝑓 (𝑖 = 𝑣 ′, 𝑏 = [−0.3, 0.3],𝑚 = 1.2, 𝑣 = 0.1), (7)

where we set the bounds parameter 𝑏 small to allow slow roll over
motion.

We also observe that get-up motion with further split feet is
perceived unnatural for humans. Thus, we constrain the distance
between the feet by adding a penalty term. The penalty term en-
courages the feet to keep the euclidean feet distance projected to
the 𝑥𝑦 plane 𝑑feet no more than roughly twice the shoulder width:

𝑟feet = 𝑓 (𝑖 = 𝑑𝑓 𝑒𝑒𝑡 , 𝑏 = [0, 0.9],𝑚 = 0.38, 𝑣 = 0). (8)

B.2 Slow Get-up Motions
For clarity and compactness, we denote the attributes in the refer-
ence trajectory 𝜏slow with an apostrophe as (.)′.

We first compare the center of mass height between the character
and reference trajectory 𝜏slow at the current timestep by computing
the distance Δℎcom = ℎcom−ℎ′com. The reward term can be formally
expressed as:

𝑟com = 𝑓 (𝑖 = Δℎcom, 𝑏 = [0, 0],𝑚 = 0.5, 𝑣 = 0.1). (9)

Similarly, we also enforce the torso orientation vectors projected
to the vertical axis between the character and reference trajectory to
match. Therefore, we include a reward term on the vertical axis pro-
jection of the torso orientation vector 𝑜torso = [𝑥uptorso, 𝑦

up
torso, 𝑧

up
torso]

to the Cartesian coordinate:

𝑟ori =
∏
𝑜∈Δ𝑜

𝑓 (𝑖 = 𝑜, 𝑏 = [−0.03, 0.03],𝑚 = 0.6, 𝑣 = 0.3), (10)

where Δ𝑜 represents the difference between the orientation vectors,
i.e., Δ𝑜 = 𝑜 − 𝑜 ′.

In addition, we notice that the tracking controller might exhibit
unnatural swift stepping motion to gain balance during the get-up
motion. This behavior is mainly caused by fast manipulating the
hip joint motor along the y axis. To mitigate this issue, we add
another regularization term on the angular joint velocities on both
hip joints 𝑣hip = [𝑣 lhip, 𝑣

r
hip] to match the corresponding value in

the reference trajectory:

𝑟hip =
1
2

∑︁
Δ𝑣∈𝑣hip−𝑣′hip

𝑓 (𝑖 = Δ𝑣, 𝑏 = [−0.5, 0.5],𝑚 = 1.3, 𝑏 = 0.1)

(11)

B.3 Standing
We slightly modify the center of mass velocity term 𝑟𝑣xycom

by setting
the upper and lower bounds to 0 as 𝑏 = [0.0, 0.0] to penalize any
movement. Besides, we add a pose tracking reward 𝑟pose on the
local joint rotations to minimize the distance between the current
pose and the designed standing pose 𝑞:

𝑟pose = 𝑒𝑥𝑝

−
1
4

𝐽∑︁
𝑗=0
| |𝑞 𝑗 − 𝑞 𝑗 | |2

 , (12)

where 𝐽 is the number of free joints, and 𝑞 𝑗 represents the rotation
angles in radians.

C DETAILED EXPLANATION OF STATE
VARIABLES

Figure 12: Diagram indicating the variables in the state defi-
nition.

As illustrated in Fig. 12, the head height is measured from the
head link to the ground along the vertical direction. The end-effector
positions are computed as the translational offset between the end-
effectors and the root link in egocentric coordinates. The state
also involves a variable indicating the straightness of the torso
[𝑥uptorso, 𝑦

up
torso, 𝑧

up
torso] as the z-component of the torso orientation

vectors [𝑋torso, 𝑌torso, 𝑍torso].

D IMPLEMENTATION DETAILS
All the training tasks are simulated using Mujoco engine [Todorov
et al. 2012] running at 800 𝐻𝑧 while all the control policies run at
40 𝐻𝑧. Our character is roughly 1.5𝑚 tall and weighs 38.3 𝑘𝑔. The
character has a total of 19 body parts and 21 DoFs in total. The
default joint angle limits and torque limits T are listed in Tab. 2 in
App. F.

To train the controllers, we apply soft actor critic (SAC) [Haarnoja
et al. 2018] with fully connected neural networks and ReLU acti-
vation function. Controlle 𝜋weak adopts torque as the action space
while we use a low-level PD controller running at 800 𝐻𝑧 to com-
pute the torque for controller 𝜋slow. PD controller has been proved
to outperform torque as actuation model for imitation tasks [Peng
and van de Panne 2017]. For the weak and slow get-up policies,
they are trained on a 32-core CPU desktop with Nvidia Geforce
RTX 2070 GPU for roughly 24 hours each. During training, policies
are evaluated across ten random initial states. The ten randomly
sampled initial states are fixed throughout the training.

For initial policy learning and strong-to-weak curriculum, the
trained policy is evaluated every 20000 simulation steps over 10
episodes. The policy is updated through SAC every simulation
step after the first 10000 simulation steps. We choose 𝛽 = 0.95
and 𝜔 = 60 throughout all the experiments. We set the clipping
boundary forM𝑖 as𝑁min = 3×105 and𝑁max = 8×105. For learning
slower get-up motions, we choose the interpolation coefficient
to be randomly sampled from [0.2, 0.8] (𝜅low = 0.2, 𝜅high = 0.8)
range for all the motions. In terms of the PD-controller, we set
the gain to be the default joint limits 𝑘𝑝 = T , and the damping
coefficient as 𝑘𝑑 = 1

10𝑘𝑝 . Our SAC implementation adopts the

Learning to Get Up SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Figure 13: Training curve comparing different initialization
strategies. We compare three strategies: 𝜖-RSI, RSI and with-
out RSI.

temperature annealing technique to adapt to different scales of
reward functions. Both the actor and critic models are two-layer
fully connected neural networks with 1024 hidden units. Tab. 1
show the hypermeters of the SAC algorithm that we used for all
the experiments.

Table 1: Hyperparameters used for training the SAC algo-
rithm.

Hyperparameter Value

Critic Learning Rate 10−4
Actor Learning Rate 10−5
Initial Temperature 𝛼 0.1
𝛼 Learning Rate 10−4
Optimizer Adam
Log of Policy Standard Deviation Min -5
Log of Policy Standard Deviation Max 2
Target Update Rate (𝜏) 5 · 10−3
Batch Size 1024
Iterations per time step 1

Discount Factor 0.97 for 𝜋weak
0.95 for 𝜋slow

Reward Scaling 1.0
Gradient Clipping False

E EPISODE INITIALIZATION STRATEGY
COMPARISON

In Fig. 13, we illustrate the performance of three initialization strate-
gies: 𝜖-RSI, RSI and without RSI. Here, without RSI refers to always
starting the episode from the beginning of the reference motion.
Our experiment suggests that 𝜖-RSI outperforms other options by
a large margin. Without RSI, initializing from the beginning of the
reference motion can lead to instability in training. Regular RSI can
successfully imitate the reference motion, but still does not perform
as well as 𝜖-RSI.

F HUMANOID CHARACTER
CONFIGURATION

In Table 2, we list the joint torque limits and joint angle limits of
the humanoid character in this work.

Table 2: Joint Configuration of the Humanoid Model

Joint Name Torque Limit T (Nm) Angle Limit (rad) Rotation Axis

𝑎𝑏𝑑𝑜𝑚𝑒𝑛𝑧 40 [−0.79, 0.79] [0, 0, 1]
𝑎𝑏𝑑𝑜𝑚𝑒𝑛𝑦 40 [−1.31, 0.52] [0, 1, 0]
𝑎𝑏𝑑𝑜𝑚𝑒𝑛𝑥 40 [−0.61, 0.61] [1, 0, 0]
𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝𝑥 40 [−0.44, 0.09] [1, 0, 0]
𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝𝑧 40 [−0.52, 0.44] [0, 0, 1]
𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝𝑦 120 [−1.92, 0.35] [0, 1, 0]
𝑟𝑖𝑔ℎ𝑡 𝑘𝑛𝑒𝑒 80 [−2.79, 0.03] [0,−1, 0]
𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑘𝑙𝑒𝑦 20 [−0.35, 0.79] [0, 1, 0]
𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑘𝑙𝑒𝑥 20 [−0.87, 0.87] [1, 0, 0.5]
𝑙𝑒 𝑓 𝑡 ℎ𝑖𝑝𝑥 40 [−0.44, 0.09] [−1, 0, 0]
𝑙𝑒 𝑓 𝑡 ℎ𝑖𝑝𝑧 40 [−0.52, 0.44] [0, 0,−1]
𝑙𝑒 𝑓 𝑡 ℎ𝑖𝑝𝑦 120 [−1.92, 0.35] [0, 1, 0]
𝑙𝑒 𝑓 𝑡 𝑘𝑛𝑒𝑒 80 [−2.79, 0.04] [0,−1, 0]
𝑙𝑒 𝑓 𝑡 𝑎𝑛𝑘𝑙𝑒𝑦 20 [−0.35, 0.79] [0, 1, 0]
𝑙𝑒 𝑓 𝑡 𝑎𝑛𝑘𝑙𝑒𝑥 20 [−0.87, 0.87] [1, 0, 0.5]
𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟1 20 [−1.48, 1.05] [2, 1, 1]
𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟2 20 [−1.48, 1.05] [0,−1, 1]
𝑟𝑖𝑔ℎ𝑡 𝑒𝑙𝑏𝑜𝑤 40 [−1.57, 0.87] [0,−1, 1]
𝑙𝑒 𝑓 𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟1 20 [−1.05, 1.48] [2,−1, 1]
𝑙𝑒 𝑓 𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟2 20 [−1.05, 1.48] [0, 1, 1]
𝑙𝑒 𝑓 𝑡 𝑒𝑙𝑏𝑜𝑤 40 [−1.57, 0.87] [0,−1,−1]

Our humanoid character is largely simplified if compared with
the human body. Some important components are missed in the
current design, including fingers and toes. Fingers and toes are vital
in the get-up motion because they contact the ground directly to
provide momentum to get up. In addition, the current character is
modeled with simple cylinders and capsules, which is far from the
shape of the real human body. We believe that careful modeling of
the humanoid character can lead to more realistic motions.

G DETAILS ON TSNE PLOTS OF
TRAJECTORIES

Since the state variable has high dimensionality, we select the more
representative features from the state variable to perform the t-SNE
analysis. The selected features are ankle rotations, knee rotations,
hip rotations, head height, and the vertical projection of the torso up
vector 𝑧uptorso. For each trajectory, we remove the states representing
the rag-doll fall and most of the standing part. The rag-doll fall
states are identical given the same initial states, which can mess
up the nearest neighbour calculation for t-SNE. The same reason
applies to the removal of most of the standing states. We choose
the perplexity parameter of t-SNE to be 10 for Fig. 7a and Fig. 7b,
and 20 for Fig. 7c.

H ALTERNATIVE TRAJECTORY
VISUALIZATION

We choose t-SNE algorithm to compress the high dimension state
to a 3D vector for visualization purpose. Alternatively, Principal
Component Analysis (PCA) serves as another popular dimension-
ality reduction algorithm to encode the original state variables
through a linear transformation. As shown in Fig. 14, we experi-
ment the choice of PCA on the same data used in the visualization
demonstrated in Fig. 7. The plots generated by PCA still provide
reasonable trajectories. However, the converging behavior of the

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Tianxin Tao, Matthew Wilson, Ruiyu Gou, and Michiel van de Panne

(a) Different Initial States (b) Different Controllers

Figure 14: PCA plots of trajectories. These two diagrams
correspond to the same data but different dimensionality
reduction algorithm of Fig. 7a and Fig. 7b.

same controller is not as clearly illustrated as with t-SNE. Addition-
ally, different trajectories produced by different controllers spread
out, and are more difficult to interpret.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 System Overview
	5 `Discover' and `Weaker' Stages
	6 `Slower' Stage
	7 Experiment Setup and Task Specification
	8 Results
	8.1 Strong-to-weak Curriculum
	8.2 Slow Get-up Motion
	8.3 Paused Get-up Motion
	8.4 Get-up Motion for Humanoid Variants

	9 Ablation Studies
	10 Conclusion
	Acknowledgments
	References
	A Pseudocode
	B Detailed Reward Design
	B.1 Exploring Initial Policies and its Low-energy Variants.
	B.2 Slow Get-up Motions
	B.3 Standing

	C Detailed Explanation of State Variables
	D Implementation Details
	E Episode Initialization Strategy Comparison
	F Humanoid Character Configuration
	G Details on tSNE Plots of Trajectories
	H Alternative Trajectory Visualization

